Lecture 4~6

<Lec 4 ์ •๋ฆฌ>

Multivariable linear regression (์—ฌ๋Ÿฌ๊ฐœ์˜ ๋ณ€์ˆ˜ ์‚ฌ์šฉ)

์‹์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ฐ”๊ฟ”์„œ ์‚ฌ์šฉ. ์œ„์˜ ์˜ˆ์‹œ๋Š” input์ด 3๊ฐœ์ธ ๊ฒฝ์šฐ hypothesis ์‹

๊ฐ™์€ ๊ฒฝ์šฐ Cost Function์˜ ์‹์€ ์ด๋ ‡๊ฒŒ ๋ฐ”๊ฟ€ ์ˆ˜ ์žˆ๋‹ค.

variable์ด ๋งŽ์•„ ์งˆ ๊ฒฝ์šฐ ์‹์ด ๋„ˆ๋ฌด ๋ณต์žกํ•ด์ง€๋ฏ€๋กœ Matrix ์˜ ๊ณฑ์…ˆ์„ ์ด์šฉํ•œ๋‹ค.

-> H(X) = XW

๊ฐ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ ์ธ์Šคํ„ด์Šค๊ฐ€ ์—ฌ๋Ÿฌ๊ฐœ ์žˆ์–ด๋„ matrix๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๊ณฑ์…ˆ์— ๋ฌธ์ œ๊ฐ€ ์—†๋‹ค.

H ร— W = H(X)H์˜ ํ–‰ = instance ๊ฐœ์ˆ˜ (data ๊ฐœ์ˆ˜)H์˜ ์—ด = variable ์ˆ˜. (๋ณ€์ˆ˜)

H(X)์˜ ํ–‰ = instance ๊ฐœ์ˆ˜
H(X)์˜ ์—ด = Y ๊ฐ’ ๊ฐœ์ˆ˜

๋‘๊ฐ€์ง€ ๊ฐ’์ด ์ฃผ์–ด์กŒ์„ ๋•Œ W์˜ ํฌ๊ธฐ ๊ฒฐ์ •
W์˜ ํ–‰ = H์˜ ์—ด
W์˜ ์—ด = H(X)์˜ ์—ด

์ถœ๋ ฅ๊ฐ’ Y๊ฐ€ 1๊ฐœ ์ด์ƒ์ธ ๊ฒฝ์šฐ matrix์˜ ๊ณฑ์…ˆ ๊ฒฐ๊ณผ ๊ฐ’์˜ ์—ด์ด 1๊ฐœ ์ด์ƒ.

TensorFlow์—์„œ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ H(X) = XW ์ˆœ์œผ๋กœ ์จ์ฃผ๋Š” ๊ฒƒ์ด matrix ๊ณ„์‚ฐ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•˜๋ฏ€๋กœ ์ตœ๋Œ€ํ•œ ์ด ํ‘œ๊ธฐ๋ฒ•์œผ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ

<Lec 5 ์ •๋ฆฌ>

Logistic classification

- ์ •ํ™•๋„๊ฐ€ ๋†’์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜

Binary classification

  • ์ •ํ•ด์ง„ ๋‘๊ฐœ์˜ ์นดํ…Œ๊ณ ๋ฆฌ ์ค‘ ํ•˜๋‚˜๋ฅผ ์„ ํƒ. (ex : Spam main Detection)

  • 0/1 ๋กœ encoding ํ•˜์—ฌ ํ‘œํ˜„ํ•œ๋‹ค.

  • ๋”ฐ๋ผ์„œ Linear ํ•œ ๊ทธ๋ž˜ํ”„ ํ˜•ํƒœ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์–ด๋ ต๋‹ค.

Linear ํ•œ ํ˜•ํƒœ์™€ ๋น„์Šทํ•˜๊ฒŒ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด 0๊ณผ 1๋กœ๋งŒ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ค๋„๋ก ์••์ถ•ํ•˜๋Š” ์‹ ์‚ฌ์šฉ.

์œ„์™€ ๊ฐ™์€ ๊ฐ€์„ค์„ ์„ธ์›Œ ์‚ฌ์šฉํ•œ๋‹ค. ๊ฐ’์€ 0์—์„œ 1์‚ฌ์ด๋กœ ๋‚˜์˜ค๊ฒŒ ๋œ๋‹ค.

Cost Function

Cost Function์€ ์œ„์™€ ๊ฐ™๋‹ค.

์œ„์˜ ์‹์€ Cost Function ์„ ์กฐ๊ฑด์„ ๋‚˜๋ˆ„์ง€ ์•Š๊ณ  ํ•˜๋‚˜์˜ ์‹์œผ๋กœ ๋งŒ๋“  ๊ฒƒ์ด๋‹ค. (Tensorflow์—์„œ ์‚ฌ์šฉํ•˜๊ธฐ ํŽธ๋ฆฌํ•˜๋„๋ก)

๋ฐ‘์˜ ์‹์€ W๊ฐ’ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ Cost๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฐ’ ๊ตฌํ•˜๊ธฐ.

<Lec 6 ์ •๋ฆฌ>

Multinomial Classification

- ์—ฌ๋Ÿฌ๊ฐœ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฒฝ์šฐ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ์„  ์ฐพ๊ธฐ.

- Binary classification ์œผ๋กœ ๊ฐ๊ฐ์˜ ๊ฐ’ ๋ถ„๋ฅ˜ ๊ฐ€๋Šฅ. ex) A or not ์„  / B or not ์„  ...

๊ฐ๊ฐ์˜ ๊ฒฐ๊ณผ ๊ฐ’์— sigmoid ํ•จ์ˆ˜ ์ ์šฉ

Cross-entropy : ๋ถˆํ™•์‹ค์„ฑ์˜ ์ •๋„Cross-entropy๋ฅผ ์ด์šฉํ•˜์—ฌ cost function ๋งŒ๋“ ๋‹ค.

S(y): ์ถœ๋ ฅ์„ softmax๋กœ ๋ณ€ํ™˜ (์˜ˆ์ธกํ•œ y ๊ฐ’)

L : ์‹ค์ œ ๊ฐ’

Logistic cost ์™€ cross entropy ์‚ฌ์‹ค์ƒ ๊ฐ™๋‹ค.

์ตœ์†Œํ™” ๊ตฌํ•˜๋Š” ๋ฒ•์€ Gradient descent๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. (๊ฒฝ์‚ฌ๋ฉด ํƒ€๊ณ  ๋‚ด๋ ค๊ฐ€ ์ตœ์ €๊ฐ’ ๊ตฌํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜)

ํ•„๊ธฐ ์ •๋ฆฌ

์ถœ์ฒ˜

Last updated